Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 269: 116256, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461679

RESUMO

Visceral leishmaniasis is a potentially fatal disease caused by infection by the intracellular protist pathogens Leishmania donovani or Leishmania infantum. Present therapies are ineffective because of high costs, variable efficacy against different species, the requirement for hospitalization, toxicity and drug resistance. Detailed analysis of previously published hit molecules suggested a crucial role of 'guanidine' linkage for their efficacy against L. donovani. Here we report the design of 2-aminoquinazoline heterocycle as a basic pharmacophore-bearing guanidine linkage. The introduction of various groups and functionality at different positions of the quinazoline scaffold results in enhanced antiparasitic potency with modest host cell cytotoxicity using a physiologically relevant THP-1 transformed macrophage infection model. In terms of the ADME profile, the C7 position of quinazoline was identified as a guiding tool for designing better molecules. The good ADME profile of the compounds suggests that they merit further consideration as lead compounds for treating visceral leishmaniasis.


Assuntos
Leishmania donovani , Leishmania infantum , Leishmaniose Visceral , Humanos , Leishmaniose Visceral/tratamento farmacológico , Antiparasitários/farmacologia , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico
2.
Front Hum Neurosci ; 16: 987217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158625

RESUMO

Previous research has demonstrated that reversing the contrast of the eye region, which includes the eyebrows, affects the N170 ERP. To selectively assess the impact of just the eyes, the present study evaluated the N170 in response to reversing contrast polarity of just the iris and sclera in upright and inverted face stimuli. Contrast reversal of the eyes increased the amplitude of the N170 for upright faces, but not for inverted faces, suggesting that the contrast of eyes is an important contributor to the N170 ERP.

3.
Eur J Med Chem ; 240: 114577, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35810535

RESUMO

Visceral leishmaniasis is a potentially fatal disease caused by the parasitic protists, Leishmania donovani and L. infantum. Current treatments remain unsuitable due to cost, the need for hospitalization, variable efficacy against different species, toxicity and emerging resistance. Herein, we report the SAR exploration of the novel hit 4-Fluoro-N-(5-(4-methoxyphenyl)-1-methyl-1H-imidazole-2-yl)benzamide [1] previously identified from a high throughput screen against Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani. An extensive and informative set of analogues were synthesized incorporating key modifications around the scaffold resulting in improved potency, whilst the majority of compounds maintained low cytotoxicity against human THP-1 macrophages that are target cells for these pathogens. New lead compounds identified within this study also maintained desirable physicochemical properties, improved metabolic stability in vitro and displayed no significant mitotoxicity against HepG2 cell lines. This compound class warrants continued investigation towards development as a novel treatment for Visceral Leishmaniasis.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Trypanosoma cruzi , Antiprotozoários/química , Humanos , Imidazóis/uso terapêutico , Leishmaniose Visceral/tratamento farmacológico
4.
Org Lett ; 22(15): 5746-5748, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32585112

RESUMO

Various sulfone tetrazoles were activated via iridium photoredox catalysis in the presence of DMAP to give dialkyl sulfones. The presumed sulfone radical intermediates were trapped by a range of electron-deficient olefins in generally good to excellent yields.

5.
RSC Med Chem ; 11(6): 685-695, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479668

RESUMO

Trypanosoma cruzi and Trypanosoma brucei are the parasitic causative agents of Chagas disease and human African trypanosomiasis (HAT), respectively. The drugs currently used to treat these diseases are not efficacious against all stages and/or parasite sub-species, often displaying side effects. Herein, we report the SAR exploration of a novel hit, 2-(4-chlorophenyl)-N-(1-propyl-1H-benzimidazol-2-yl)acetamide previously identified from high throughput screens against T. cruzi, Trypanosoma brucei brucei and Leishmania donovani. An informative set of analogues was synthesized incorporating key modifications of the scaffold resulting in improved potency whilst the majority of compounds retained low cytotoxicity against H9c2 and HEK293 cell lines. The SAR observed against T. cruzi broadly matches that observed against T.b. brucei, suggesting the possibility for a broad-spectrum candidate. This class of compounds therefore warrants further investigation towards development as a treatment for Chagas disease and HAT.

6.
Artigo em Inglês | MEDLINE | ID: mdl-30690282

RESUMO

In the present study, the anthelmintic activity of a human tyrosine kinase inhibitor, AG-1295, and 14 related tetrahydroquinoxaline analogues against Haemonchus contortus was explored. These compounds were screened against parasitic larvae - exsheathed third-stage (xL3) and fourth-stage (L4) - using a whole-organism screening assay. All compounds were shown to have inhibitory effects on larval motility, development and growth, and induced evisceration through the excretory pore in xL3s. The estimated IC50 values ranged from 3.5 to 52.0 µM for inhibition of larval motility or development. Cytotoxicity IC50 against human MCF10A cells was generally higher than 50 µM. Microscopic studies revealed that this eviscerated (Evi) phenotype occurs rapidly (<20 min) and relates to a protrusion of internal tissues and organs (evisceration) through the excretory pore in xL3s; severe pathological damage in L4s as well as a suppression of larval growth in both stages were also observed. Using a relatively low concentration (12.5 µM) of compound m10, it was established that the inhibitor has to be present for a relatively short time (between 30 h and 42 h) during in vitro development from xL3 to L4, to induce the Evi phenotype. Increasing external osmotic pressure prevented evisceration and moulting, and xL3s remained unaffected by the test compound. These results point to a mode of action involving a dysregulation of morphogenetic processes during a critical time-frame, in agreement with the expected behaviour of a tyrosine kinase inhibitor, and suggest potential for development of this compound class as nematocidal drugs.


Assuntos
Antinematódeos/farmacologia , Haemonchus/efeitos dos fármacos , Quinoxalinas/farmacologia , Tirfostinas/farmacologia , Animais , Bioensaio , Descoberta de Drogas , Haemonchus/fisiologia , Concentração Inibidora 50 , Larva/efeitos dos fármacos , Larva/fisiologia , Muda/efeitos dos fármacos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA